Lti System Identification Using Wavelets
نویسندگان
چکیده
We describe the use of the discrete wavelet transform (DWT) for system identification. Identification is achieved by using a test excitation to the system under test (SUT) that also acts as the analyzing function for the DWT of the SUT’s output, so as to recover the impulse response. The method uses as excitation any signal that gives an orthogonal inner product in the DWT at some step size (that cannot be 1).We favor wavelet scaling coefficients as excitations, with a step size of 2. However, the system impulse or frequency response can then only be estimated at half the available number of points of the sampled output sequence, introducing a multirate problem that means we have to ‘over sample’ the SUT output. The method has several advantages over existing techniques, e.g., it uses a simple, easy to generate excitation, and avoids the singularity problems and the (unbounded) accumulation of round-off errors that can occur with standard techniques. In extensive simulations, identification of a variety of finite and infinite impulse response systems is shown to be considerably better than with conventional system identification methods. The variation of error with frequency is simulated in identification methods.
منابع مشابه
Spline Wavelets for System Identification
The paper introduces spline wavelets as a modelling tool for system identification and proposes the technique of consistent output prediction using wavelets for estimating system parameters. It suggests that direct weighted summation of projections in approximation space could be used for deriving consistent output prediction in case model structure is built with spline wavelets. This can be vi...
متن کاملThe Exact Solution of Min-Time Optimal Control Problem in Constrained LTI Systems: A State Transition Matrix Approach
In this paper, the min-time optimal control problem is mainly investigated in the linear time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary optimality conditions have been simultaneously used to solve the optimal control problem. These optimality ...
متن کاملOptimal Control of Linear Time Invariant Singular Delay Systems Using the Orthogonal Functions
In this paper four different orthogonal functions have been used to approximate the optimal solution of linear time invariant (LTI) singular delayed systems. The idea is that the states and the input are expressed in terms of these orthogonal functions. The method simplifies the system of state equations into a set of algebraic equations which can be solved using a digital computer. The main ad...
متن کاملActive Noise Cancellation using Online Wavelet Based Control System: Numerical and Experimental Study
Reaction wheels (RWs) used for attitude control of space vehicle systems usually encounter with undesired wide band noises. These noises which significantly affect the performance of regulator controller must tune the review or review rate of RWs. According to wide frequency band of noises in RWs the common approaches of noise cancellation cannot conveniently reduce the effects of the noise. Th...
متن کاملAdaptive fuzzy pole placement for stabilization of non-linear systems
A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009